Intrinsic rotation from a residual stress at the boundary of a cylindrical laboratory plasma.
نویسندگان
چکیده
An azimuthally symmetric radially sheared azimuthal flow is driven by a nondiffusive, or residual, turbulent stress localized to a narrow annular region at the boundary of a cylindrical magnetized helicon plasma device. A no-slip condition, imposed by ion-neutral flow damping outside the annular region, combined with a diffusive stress arising from turbulent and collisional viscous damping in the central plasma region, leads to net plasma rotation in the absence of momentum input.
منابع مشابه
Influence of Rotation on Vibration Behavior of a Functionally Graded Moderately Thick Cylindrical Nanoshell Considering Initial Hoop Tension
In this research, the effect of rotation on the free vibration is investigated for the size-dependent cylindrical functionally graded (FG) nanoshell by means of the modified couple stress theory (MCST). MCST is applied to make the design and the analysis of nano actuators and nano sensors more reliable. Here the equations of motion and boundary conditions are derived using minimum potential ene...
متن کاملExperimental observations of driven and intrinsic rotation in tokamak plasmas
Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect j B × forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotat...
متن کاملEXC/3-5 Characterization of the Effective Torque Profile Associated With Driving Intrinsic Rotation on DIII-D
Recent experiments on DIII-D have focused on elucidating the drive mechanisms for intrinsic rotation in tokamak fusion plasmas. For a wide range of DIII-D H-mode plasmas, the effective torque at the edge ( >0.8) associated with the intrinsic rotation shows a dependence on the edge pressure gradient, which is qualitatively consistent with models describing E B shear as a means of creating “resid...
متن کاملA simple model of intrinsic rotation in high confinement regime tokamak plasmas
A simple unified model of intrinsic rotation and momentum transport in high confinement regime H-mode tokamak plasmas is presented. Motivated by the common dynamics of the onset of intrinsic rotation and the L-H transition, this simple model combines E B shear-driven residual stress in the pedestal with a turbulent equipartition pinch to yield rotation profiles. The residual stress is the prima...
متن کاملThe Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator C-Mod Tokamak Plasmas
Intrinsic core toroidal rotation has been observed in I-mode plasmas from the Alcator C-Mod tokamak, and is found to be very similar to the rotation in H-mode discharges, both in its edge origin, profile shape and in the scaling with global plasma pressure. Since Iand H-mode plasmas have similar pedestal temperature gradients, but completely different edge density profiles, it may be concluded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 104 6 شماره
صفحات -
تاریخ انتشار 2010